Extensions 1→N→G→Q→1 with N=C3 and Q=C422S3

Direct product G=N×Q with N=C3 and Q=C422S3
dρLabelID
C3×C422S396C3xC4^2:2S3288,643

Semidirect products G=N:Q with N=C3 and Q=C422S3
extensionφ:Q→Aut NdρLabelID
C31(C422S3) = C62.44C23φ: C422S3/C4×Dic3C2 ⊆ Aut C348C3:1(C4^2:2S3)288,522
C32(C422S3) = C62.6C23φ: C422S3/Dic3⋊C4C2 ⊆ Aut C348C3:2(C4^2:2S3)288,484
C33(C422S3) = C62.47C23φ: C422S3/D6⋊C4C2 ⊆ Aut C396C3:3(C4^2:2S3)288,525
C34(C422S3) = C12216C2φ: C422S3/C4×C12C2 ⊆ Aut C3144C3:4(C4^2:2S3)288,729
C35(C422S3) = C62.25C23φ: C422S3/S3×C2×C4C2 ⊆ Aut C396C3:5(C4^2:2S3)288,503

Non-split extensions G=N.Q with N=C3 and Q=C422S3
extensionφ:Q→Aut NdρLabelID
C3.(C422S3) = C422D9φ: C422S3/C4×C12C2 ⊆ Aut C3144C3.(C4^2:2S3)288,82

׿
×
𝔽